Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function.

نویسندگان

  • Ki Woo Chun
  • Hyuk Sang Yoo
  • Jun Jin Yoon
  • Tae Gwan Park
چکیده

Poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by an oil/water emulsion solvent evaporation method to use as an injectable microcarrier for cell delivery. Three different kinds of PLGA microspheres having hydrophobic, negatively charged, and positively charged surfaces were prepared. Hydrophobic and negatively charged PLGA microspheres were prepared by using terminally capped and uncapped PLGA polymer, respectively. Positively charged PLGA microspheres were prepared by blending PLGA with PLGA-g-poly(L-lysine) graft copolymer as a surface modifying agent. Bovine chondrocytes were cultured on the three PLGA microspheres under serum conditions to comparatively evaluate cell attachment, cell proliferation, and cell function with respect to surface properties. Positively charged PLGA microspheres showed the highest cell attachment, growth, and function compared to hydrophobic and negatively charged microspheres. Surface-modified PLGA microspheres can potentially be used as an injectable delivery system for cells into a tissue defect site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and Nano-Hydroxyapatite Decorated with IGF-1 via Polydopamine Coating for Enhancing Cell Proliferation and Osteogenic Differentiation.

In this study, insulin-like growth factor 1 (IGF-1) was successfully immobilized on the poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HA) and pure PLGA microcarriers via polydopamine (pDA). The results demonstrated that the pDA layer facilitated simple and highly efficient immobilization of peptides on the microcarriers within 20 min. Mouse adipose-derived stem cells (ADSCs) attachment and pr...

متن کامل

Poly(α-hydroxy Acids)-Based Cell Microcarriers

Biodegradable poly(α-hydroxyacids) have gained increasing interest in the biomedical field for their use as cell microcarriers thanks to their biodegradability, biocompatibility, tunable mechanical properties/degradation rates and processability. The synthesis of these poly(α-hydroxyacids) can be finely controlled to yield (co)polymers of desired mechanical properties and degradation rates. On ...

متن کامل

Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro.

Biodegradable macroporous gelatin microcarriers fixed with blood-derived biodegradable glue are proposed as a delivery system for human autologous chondrocytes. Cell-seeded microcarriers were embedded in four biological glues-recalcified citrated whole blood, recalcified citrated plasma with or without platelets, and a commercially available fibrin glue-and cultured in an in vitro model under s...

متن کامل

ساخت داربست نانوفیبر هیبریدی PCL/PLGA با قابلیت رهایش کنترل‌شده انسولین به منظور کاربرد آن در مهندسی بافت غضروف

Introduction: Poly lactic co- glycolic acid (PLGA) and poly caprolacton (PCL) are highly applicable polymers in the field of drug delivery and tissue engineering scaffolds. Therefore, this study aimed to design an insulin-loaded PCL/PLGA hybrid nanofiber scaffold in order to be applied in attachment and growth of chondrocytes. Moreover, it can provide a vehicle for the controlled release of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2004